没有了李轩,他照样也比不过欧阳哲这种数学天才,相反的,李轩的存在可以一直提示他的不足,李轩在身边,可以督促自己努力吧。
有实力进入国家队就六人,他现在远远没有达到这个实力,但只要不停超越自己,迟早他也能找到自己的荣耀。
对于这一道题,梁智慧还是想不明白,“我还是不是很理解,按你说的思路,然后呢要怎么证明?”
李轩眨了眨眼,指了指题干组合数,“这个题目里,除数中任意一个素因子,用卢卡斯定理就可以得到,这个定理《初等数论》有证明过程,这个卢卡斯定理用来解决大组合数求模是很有用,用来求 c(n,m) mod p的值,对了,这里p一定要是素数,你看,正好满足题意。”
梁智慧忽然想起了什么,“卢卡斯定理?这是《初等数论》40几页的例题吗?”
李轩笑着说,“没错,我也是刚刚才看到,没想到正好可以用在你这题。”
梁智慧有点茫然。
知道定理和运用定理完全是两回事,卢卡斯定理不是要求必须掌握,只做了解,李轩看过就懂得运用定理,到更复杂的例题上,无疑是对卢卡斯定理理解得很深刻了……
而梁智慧他看到这道题,就没想过卢卡斯定理,要不然也不会卡他这么久。跟上李轩思路不难,但是没有了李轩,他就没有思路,不需要考试,就看出不如李轩了。
梁智慧叹了口气,有了思路,就不打扰李轩,拿起题目在一边自个儿钻研起来,他不需要每个步骤都要别人教,李轩给他一点灵感,他就可以做出来。
这种问问题办法,也是比较能促使他进步。
但此刻,在梁智慧心底,还有一种奇怪的感觉,就是李轩解题速度是不是变得越来越快了?李轩才看几眼,就抓住了思路。或者更简单的说法,就是李轩好像越来越聪明。
这就有点不可思议。
难道说李轩的天赋除了平面几何,还在数论上?他深吸了口气,除了佩服,还有几分难以言说的羡慕。
……
……
傍晚下课,李轩拿起手机看了看,还是没有接到妹妹的电话,心里不知为何有些担心起来。
教室里,蒋书同学突然叫了起来:
“我感觉我在数论上可能是天才!我证明了出世界难题,孪生素数猜想——孪生素数无限性。”
同学们都呆住了,目光充斥这不信,跑到蒋书身边同学过去,不少人想看笑话。
“真的假的?”
“证明了世界难题?”
“拿来看看!”
……
李轩瞧见动静,有些无语,当作没听到。
说来他刚听说数论这些猜想,也不信邪想要证明,后来不得不承认证明太复杂,不是现在的他能办到的。如果高中生能够证明孪生素数无穷,那人类历史上这么多数学家大概是废了。
“大家让开下,我让李轩看看,李轩不是数学最厉害?”这时蒋书却主动找了李轩,把证明过程放在李轩桌上,“李轩,看看我的证明可以吧?”
同学们也围观过来凑热闹。
李轩无奈低头一看,蒋书的证明稿纸,一时间哑然无语。
蒋书孪生素数无穷的证明思路说明简单如下:
令n=2*3*5*7……*p(p为素数),那么n+1和n-1是孪生素数。p越大,n越大,因为素数无穷,所以孪生素数无穷。